
lable at ScienceDirect

Energy 188 (2019) 116091
Contents lists avai
Energy

journal homepage: www.elsevier .com/locate/energy
Machine learning for predicting thermodynamic properties of pure
fluids and their mixtures

Yuanbin Liu a, Weixiang Hong b, Bingyang Cao a, *

a Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing,
100084, China
b Institute of Systems Science, National University of Singapore, 119615, Singapore
a r t i c l e i n f o

Article history:
Received 6 June 2019
Received in revised form
2 September 2019
Accepted 7 September 2019
Available online 9 September 2019

Keywords:
Thermodynamic properties
Machine learning
Support vector regression
Mixtures
Molecular dynamics simulation
* Corresponding author.
E-mail address: caoby@tsinghua.edu.cn (B. Cao).

https://doi.org/10.1016/j.energy.2019.116091
0360-5442/© 2019 Elsevier Ltd. All rights reserved.
a b s t r a c t

Establishing a reliable equation of state for largely non-ideal or multi-component liquid systems is
challenging because the complex effects of molecular configurations and/or interactions on the ther-
modynamic properties must generally be taken into account. In this regard, machine learning holds great
potential for directly learning the thermodynamic mappings from existing data, thereby bypassing the
use of equations of state. The present study outlines a general machine learning framework based on
high-efficiency support vector regression for predicting the thermodynamic properties of pure fluids and
their mixtures. The proposed framework is adopted in conjunction with training data obtained from a
high-fidelity database to successfully predict the thermodynamic properties of three common pure
fluids. The predictions demonstrate extremely low mean square errors. Moreover, little loss in the
prediction accuracy is obtained for ternary mixtures of the pure fluids at the cost of a modest increase in
the volume of training data provided by state-of-the-art molecular dynamics simulations. Our results
demonstrate the promising potential of machine learning for building accurate thermodynamic map-
pings of pure fluids and their mixtures. The proposed methodology may pave the way in the future for
the rapid exploration of novel or complex systems with potentially exceptional thermodynamic
properties.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Pressure, volume, and temperature (PVT) are the most funda-
mental thermodynamic properties of matters because they can be
relatively easily measured and are intrinsically related to other
thermodynamic parameters [1,2]. Nowadays, the PVT properties of
fluids are of intrinsic interest in many fields, such as energy,
physics, chemistry, materials, and environmental sciences, and they
are employed in numerous concrete applications such as the design
of power generation systems [3,4], the analysis of thermal energy
transformations [5,6], and the interpretation of thermochemical
and geochemical processes [7,8].

Although experimental measurements are the preferable means
of acquiring the PVT properties of fluids, conducting experimental
measurements can require considerable resources, particularly
under extreme environments of high temperature and high
pressure and when working with erosive or explosive substances.
These issues have been addressed to some extent via the use of
molecular dynamics (MD) simulation, which has garnered wide-
spread interest as a state-of-the-art technique for obtaining ther-
modynamic data related to specific fluids. A large number of studies
have demonstrated that the accuracy of the thermodynamic
properties obtained by MD simulations is comparable with that of
the thermodynamic properties obtained experimentally when the
force fields are suitably chosen [9,10]. Nevertheless, MD simulations
are extremely time-consuming for large molecular systems. As a
result, only limited thermodynamic data can be obtained under
discrete PVT states experimentally and by MD simulations. This
issue can be addressed by developing an equation of state (EOS) to
correlate the experimental and simulated data. Remarkable prog-
ress has been made in the development of equations of state in
recent decades. A series of equations of state have been established
and modified, such as the well-known van der Waals, Soave
modified Redlich-Kwong (SRK), Peng-Robinson (PR), and Duan-
Møller-Weare (DMW) EOS models [11e15]. Unfortunately, no uni-
versal EOS has been developed to date due to the complex
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interactions between molecules in non-ideal fluids. For example,
the PR-EOS is one of the most widely applied models, and yet more
than 200 modified forms of the model have been developed for
pure fluids and over 100 for mixtures to overcome the inherent
deficiencies of the original model [14]. Moreover, a majority of
these modifications are restricted to the specific properties and
substances for which they were developed, and all new modifica-
tions and optimizations must be conducted for previously unex-
plored properties and substances. Additionally, the modified
equations of state typically become increasingly complicated to
enhance their prediction accuracy, and this significantly reduces
the simplicity of the original equations [16e18].

Considerable interest has been generated recently in employing
machine learning (ML) methods to emerging applications in the
theoretical and computational areas of physics, chemistry, and
materials science [19e30]. Presently, these applications mainly
involve atomic-level processes, such as substituting the evaluation
of atomic-level processes by means of intensive calculations based
on density functional theory with rapid predictions based on ML
methods [19,24,31e34]. Yet, little work has been devoted toward
exploring the thermodynamic properties of pure fluids and their
mixtures over a wide range of temperatures by ML methods.
Nevertheless, the fact that ML-based approaches are purely data-
driven and can potentially generate mappings among the ther-
modynamic parameters of materials without relying on any con-
crete expressions or underlying physical insights is extremely
attractive. Achieving this goal would create a novel means of
rapidly investigating the thermodynamic properties of new or
complex compounds.

In this study, we present a general ML framework based on
support vector regression (SVR) for predicting the PVT properties of
pure fluids and their mixtures. Here, SVR is the regression version
of the support vector machine. We have selected SVR for the pro-
posed framework because it has demonstrated good performance
on multiple non-linear regression problems compared with other
ML techniques [35], such as ridge regression [36,37], the least ab-
solute shrinkage and selection operator (LASSO) [37,38], and
Gaussian process regression [35,39]. The feasibility and accuracy of
our proposed ML framework are demonstrated by quantitatively
evaluating the predictions obtained for several practical applica-
tions. All training data are derived either from a high-fidelity
database or from MD simulations. The goal of the proposed
framework is to facilitate the efficient and rapid exploration of new
or complex fluids with superior thermodynamic properties.

2. Methodology

2.1. Support vector regression

We assume a training set with l data points c ¼ fðy1;z1Þ; ðy2;
z2Þ;… ; ðyl;zlÞg, where yi2ℝn is an input vector, zi2 ℝ1 denotes
an output or label, and i¼ 1, 2, …, l. The goal of SVR is to find a
function f ðyÞ that estimates z with an acceptable small error. The
standard SVR algorithm (i.e., ε-SVR) was initially proposed by
Vapnik based on the ε-insensitive loss function [40]. Here, ε-SVR
was employed to fit a tube of radius ε to data, where absolute de-
viations between f ðyÞ and labels less than or equal to ε were
accepted, and all other deviations greater than ε were rejected.
However, specifying an appropriate value of ε beforehand is diffi-
cult. Schӧlkopf et al. [41] addressed this issue by developing the n-
SVR algorithm, which modified ε-SVR by replacing ε with a new
parameter n. The n-SVR algorithmwas demonstrated to be effective
for controlling the number of support vectors and training errors by
adjusting the value of n, where n2ð0;1� [41,42]. The regression
function in n-SVR takes the form
f ðyÞ¼
Xl
i¼1

ðbai � aiÞ hfðyÞ; fðyiÞi þ b; (1)

where bai and ai are the Lagrange multipliers, b is a bias parameter,
fðyÞmaps y into a higher-dimensional space denoted as the feature
space, and 〈 , ; , 〉 refers to an inner product. The n-SVR imple-
mentation in the present study is based on the LIBSVM package
[43].

The role of the mapping fðyÞ is to make the SVR algorithm
nonlinear. Even though Eq. (1) maintains a linear form in feature
space, it incorporates the nonlinearity in the original input space.
However, determining an explicit form for fðyÞ a priori is generally
infeasible. Fortunately, determining an explicit form for fðyÞ is
unnecessary because determining the inner product hfðyÞ; fðyiÞi in
feature space is sufficient. This is incorporated in the so-called
“kernel trick” that provides a computationally efficient means of
determining the inner product via a kernel function given as kðy;yiÞ
¼ hfðyÞ; fðyiÞi. The mapping fðyÞ is fully implicit in kðy; yiÞ. In
addition, kðy; yiÞ should be positive semidefinite based on Mercer's
theorem [44]. A number of kernels have been commonly adopted,
such as linear, polynomial, Gaussian or radial basis function (RBF),
Laplacian, and sigmoid kernels. The present work adopts the
Gaussian kernel to train our models due to its robust and promising
performance in preliminary experiments. The Gaussian kernel is
given as

kðy; yiÞ ¼ exp
�
� ky � yik2

2s2

�
; (2)

where s denotes the width of the Gaussian, and k , k refers to the
Euclidean L2-norm. As a simplification, Eq. (2) can be written as kðy;
yiÞ ¼ expð� gky � yik2Þ, where g ¼ ð2s2Þ�1.

In n-SVR, the parameters bai and ai are determined by solving the
dual optimization problem of convex quadratic programming,
which is stated as

maxba i; ai

Xl
i¼1

ðbai � aiÞzi �
1
2

Xl
i;j¼1

ðbai � aiÞ
�baj � aj

�
k
�
yi;yj

�
; (3)

subject to

Xl
i¼1

ðbai � aiÞ ¼ 0;

Xl
i¼1

ðbai þ aiÞ � C,n;

0 � bai;ai � C=l; i ¼ 1;2;…; l;

(4)

where C is a positive regularization parameter determining the
trade-off between training error and model complexity. Briefly, the
training error typically decreases with increasing C, while over-
fitting becomes increasingly more likely.

The optimal selections of g and C may be obtained by a grid
search method in conjunction with k-fold cross-validation (CV),
where k is a positive integer. This process can be described as fol-
lows. First, the training sets are divided into k equally sized subsets.
Then, each subset is adopted one time as the testing set, while the
remaining (k� 1) subsets are utilized for training. Accordingly, the
CV error is estimated by the average of the errors of the k generated
models. The grid search method employs a grid space consisting of
discrete (g, C) values serving as grid points. The optimal parameters
g and C are then determined as the single grid point within the grid
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space yielding the lowest CV error.

2.2. Machine learning framework

We consider mixtures consisting of n distinct molecular com-
ponents and seek to define the target property P according to the
system attributes D¼ [Vm T x1 x2 … xn�1], where Vm is the molar
volume of the mixture, T is the temperature, and xj is the molar
fraction of the jth molecular component, for j¼ 1, 2,…, n� 1. The
input vector contains the molar fractions of only (n� 1) compo-
nents because the last component xn is independent of the others
under the constraint xn ¼ 1� ðx1 þ x2 þ… þ xn�1Þ. In addition, we
note that the attributes of a pure fluid are reduced to D¼ [Vm T].

The proposed ML framework for predicting the thermodynamic
properties of pure fluids or their mixtures is illustrated in Fig. 1
based on the above discussion. This process is also compared in
Fig. 1 with that employed when adopting equations of state for
generating mappings among thermodynamic parameters. For the
ML framework, the sample space of the thermodynamic parame-
ters D must first be obtained from some high-fidelity databases,
experiments, or MD simulations. Then, the data within the sample
space must be rescaled to decrease the differences in their mag-
nitudes by various means, such as normalization, regularization, or
logarithmic transformation. This is a significant step prior to sub-
mitting the data for training to avoid the impacts of data with
extremely imbalanced magnitudes on the training process. The
rescaling process, however, does not apply to the molar fractions
because they are naturally normalized. We note from preliminary
experiments that logarithmic transformation tends to maintain the
relative magnitudes of PVT data better than normalization and
regularization and therefore provides better results for our tasks.
The logarithmic transformation equations are given as follows:

P0 ¼ log10ðPÞ; (5)

V 0
m ¼ log10ð1000�VmÞ (6)

T 0 ¼ log10ðTÞ: (7)

Here, P is given in MPa, Vm in L/mol, and T in K. Accordingly, the
input vector y and the label z employed by SVR are determined in
training as [V'm T0 x1 x2 … xn�1] and P0, respectively. Afterward, the
rescaled sample space is divided into a training set and a testing set.
Then, the grid search method is adopted with fivefold cross-
validation (CV) to determine the optimal values of g and C in n-
SVR. The entire training set with the optimal values of g and C is
Fig. 1. Outline of the two methods for generating mappings among thermodynamic par
experimental or simulated data, as illustrated in the upper half of the figure. The other metho
of the figure.
then employed to optimize the objective function of our n-SVR
implementation with respect to the model parameters using the
Gaussian kernel. As a result, a predictive model is constructed.

After constructing the predictive model, its feasibility can be
evaluated by comparing its ML mappings with the original training
data, and the testing set can be employed to validate the accuracy
and generalization ability of the predictive model. Two evaluation
criteria are commonly adopted for conducting quantitative as-
sessments of the feasibility, accuracy, and generalization ability of a
predictive model. The first is the mean square error (MSE)

MSE ¼ 1
N

XN
i¼1

ðf ðyiÞ � ziÞ2; (8)

which is employed to represent the training error of the predictive
model with respect to the training set and the generalization error
of the predictive model with respect to the testing set. The other is
the squared correlation coefficient r2, given as

r2 ¼
�
N
PN

i¼1f
�
yi
�
zi �

PN
i¼1f

�
yi
�PN

i¼1zi
�2�

N
PN

i¼1f ðyiÞ2 �
�PN

i¼1f ðyiÞ
�2	�

N
PN

i¼1z
2
i �

�PN
i¼1zi

�2	;
(9)

which is used to quantify the strength of the linear correlations
between the labels and the training results with respect to the
training set and the prediction results with respect to the testing
set. It worth noting that there are several significant factors that
will bring in errors with v-SVR: (a) regions of low data density, this
could be avoided by adopting the relatively uniform data distri-
bution to train the model; (b) high variance of magnitude of inputs,
this could be solved by the scaling of inputs; (c) underfitting, it
might be overcome by appropriately decreasing the regularization
strength; (d) overfitting, it might be settled by providing sufficient
training data and appropriately selecting the regularization
strength and the kernel width with the fivefold cross-validation.
2.3. Details on molecular dynamics simulations

The parameters of the potential models employed in our MD
simulations have been carefully chosen. Accordingly, the TIP4P [45],
EMP2 [46], and two-site models [47] were employed for simulating
H2O, CO2, and H2 molecules, respectively. A series of MD simula-
tions are performed by using the LAMMPS package [48]. Simulated
ameters. One method involves establishing an empirical equation of state by fitting
d is based on the proposed machine learning framework, as illustrated in the lower half



Table 1
Details regarding the sample spaces. Here, N1 and N2 denote the sizes of the training sets and the testing sets, respectively.

System xH2O xCO2
xH2

T (K) Vm (L/mol) P (MPa) N1 N2

H2O 1 e e 400e2000 0.05e0.95 0.25e426 646 132
CO2 e 1 e 300e1800 0.05e0.95 2e770 591 120
H2 e e 1 300e1000 0.05e0.95 3e236 285 56
H2O-CO2-H2 0.1e0.8 0.1e0.8 0.1e0.8 650e1150 0.05e1.50 3e339 504 156
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systems contain 2500 molecules for the ternary mixtures. All
molecules are located in a cubic box with periodic boundary con-
ditions. The long-range Coulombic interactions are handled by the
particle-particle/particle-mesh (PPPM) whereas the short-range
interaction potential is cut off beyond 12 Å. A Nos�e-Hoover ther-
mostat [49] is coupled to systems to control temperatures for the
canonical (NVT) ensembles along which the pressure of systems is
calculated. The time step is of 1 fs in all simulations. Initial equili-
bration periods are 600 ps, followed by simulation runs of 600 ps to
record meaningful data.
3. Results and discussion

In the following sections, we apply the proposed ML framework
to predict the thermodynamic properties of three pure fluids and
ternary mixtures of the three. The pure fluids include water (H2O),
carbon dioxide (CO2), and hydrogen (H2) because these are the
most common substances and also include polar and non-polar
molecules. Moreover, these pure fluids play important roles in
recently emerging technologies such as the extraction of super-
critical fluids [50] and coal gasification in supercritical water [51].
Predictions for all cases are conducted over awide range of T, which
include near-critical and supercritical regions of their phase space.

The thermodynamic properties of H2O, CO2, and H2 have been
extensively studied via experiments and simulations, and this has
generated an abundance of high-fidelity datasets. Accordingly, the
sample spaces for these pure fluids have been obtained directly
from the database provided by the prestigious National Institute of
Standards and Technology (NIST). However, experimental and
simulation data regarding the thermodynamic properties of H2O-
CO2-H2 ternary mixtures are presently scarce. Therefore, sufficient
training data pertaining to the thermodynamic properties of
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Fig. 2. Contour lines of the CV error as a function of log2ðgÞ and log2ðCÞ for pure H2O. T
ternary H2O-CO2-H2 mixtures required by the present study have
been obtained by conducting MD simulations ranging from the
near-critical region to the supercritical region, which yielded 660
datasets. Details regarding the adopted sample spaces of the
aforementioned systems are provided in Table 1.

The ML framework was first applied to the pure fluids, where
y¼ [V'm T'] and z¼ P'. The results for H2O are described in detail,
whereas only the main results for CO2 and H2 are presented owing
to space limitations. The coarse- and fine-grained grid searches for
the optimal parameters g and C for H2O are illustrated in Figs. 2(a)
and (b), respectively, as a function of log2ðgÞ and log2ðCÞ. Choosing
such exponentially increasing grid sizes is a typical strategy
employed to increase the efficiency of the grid search method. In
addition, this strategy ensures that the grid space can span a suf-
ficiently wide range of both g and C. The total calculation times
involved in the grid search method can be further reduced by first
conducting a coarse grid search to determine an approximate re-
gion for which the optimal parameters may be located prior to
conducting searches over finer-grained grids. This approximate
region for H2O is enclosed by the dashed black line in Fig. 2(a).
Then, smaller grid sizes are employed, as shown in Fig. 2(b), to
pinpoint the optimal parameters. The results indicate that the two
optimal parameters lie within the grid space, which confirms that
our original grid spans are sufficiently large to include the optimal
parameters. The contour lines in Fig. 2(b) suggest that multiple
parameter values correspond with an equivalent CV accuracy. Un-
der this condition, the optimal parameters may be determined as
those lying with the minima of C to reduce the possibility of
overfitting. The above-discussed procedure yields optimal g and C
values of 16 and 8, respectively, for the H2O model. The optimiza-
tion results for other models are listed in Table 2.

The optimal values of g and C are then utilized with the training
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set derived from the NIST basis sets for training the n-SVR, and the
final ML mappings are generated according to the n-SVR with the
Gaussian kernel. Figs. 3(a) and (b) present comparisons between
the NIST basis sets with the data generated from the ML mappings
for H2O based on a training set and a testing set, respectively. The
NIST training set data are marked by the “þ” symbols in Fig. 3(a)
whose colors represent the values of T based on the color scale
given to the right of the figure, while the corresponding ML map-
pings are described by the smooth grey curves. Similarly, the NIST
testing set data in Fig. 3(b) are marked by various symbols ac-
cording to the values of Vm pertaining to the data, while the cor-
responding MLmappings are described by the curves. The accuracy
of the ML mappings based on the training set serves as a necessary
factor for validating the feasibility of the data-driven ML frame-
work, whereas the prediction accuracy of the ML mappings based
on the testing set serves the role of estimating the generalization
performance of the framework for data not included in the original
dataset. It is observed that all ML outputs for H2O agree remarkably
well with the training and testing set data over a wide range of T.
Furthermore, we quantify and summarize the precision of the ML
Table 2
Optimal values of parameters g and C obtained for n-SVR by fivefold CV.

System g C

H2O 16 8
CO2 8 16
H2 2 4
H2O-CO2-H2 2 32
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Fig. 3. Comparisons of the NIST basis sets with the data generated from the ML
mappings for H2O: (a) ML mappings based on the training set as a function of the
training set size N; and (b) ML mappings based on the testing set as a function of T.
Both datasets are derived from the NIST database.
mappings for reproducing the pressure of H2O, CO2, and H2 in
Table 3. It is noted that the training and prediction errors of ML
mappings are rather small. In addition, all values of r2 are quite
close to 1, indicating that a strongly linear relationship exists be-
tween the basis sets and the mapping and prediction data. These
results verify the applicability of our ML framework for various
pure fluids.

In contrast to the pure liquids, the input vector y of the H2O-
CO2-H2 mixtures would be rendered as [V'm T' xH2O xCO2

], [V'm T'
xH2O xH2

], or [V'm T' xCO2
xH2

], which are mutually equivalent
because the last molar fraction component is independent of the
others under the above-discussed constraint. Despite the increased
number of dimensions, the ML procedures implemented here are
identical to those employed for the pure liquids. Specific compo-
sition for the ternary mixtures and corresponding dataset size are
presented in Fig. 4. Again, the optimized values of g and C are ob-
tained, as listed in Table 2. From Fig. 5(a), we can observe that the
ML mappings for the ternary mixtures achieve good thermody-
namic mapping and high prediction accuracies from the near-
critical region to the supercritical region. This is also indicated by
the results listed in Table 3 for the ternary mixtures, where the
mapping and prediction errors are extremely low, and the values of
r2 are all nearly equal to 1. We also compare the results of Fig. 5(a)
with the results obtained from the three most typical equations of
state for the H2O-CO2-H2mixtures in Fig. 5(b), namely PR-EOS, SRK-
EOS, and DMW EOS. Here, extending an EOS to mixtures requires
the use of a mixing rule. We adopted the commonly used van der
Waals mixing rule for the PR-EOS and SRK-EOS, and the corre-
sponding equation parameters were obtained from the available
literature [52e54]. We note from the figure that the prediction
Table 3
Accuracies and correlations for H2O, CO2, H2, and their ternary mixtures.

System Training set Testing set

MSE r2 MSE r2

H2O 2.52� 10�4 0.999223 2.41� 10�4 0.999115
CO2 9.65� 10�6 0.999958 5.18� 10�6 0.999978
H2 4.44� 10�7 0.999997 2.47� 10�7 0.999999
H2O-CO2-H2 1.70� 10�6 0.999992 2.52� 10�5 0.999894
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Fig. 4. Chosen specific composition and corresponding dataset size for the H2O-CO2-
H2 ternary mixtures.
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performance of the PR-EOS is satisfactory within the relatively low
pressure regime. However, the prediction results of the PR-EOS
deviate from the MD simulations in the high pressure and tem-
perature regimes, and the deviation increases with increasing
pressure. The mixing rules employed may be the primary factor
detracting from the performance of the PR-EOS. It is shown that
determining an appropriate mixing rule for ternary mixtures over
varying molar fractions is quite challenging due to the complexity
and uncertainty associated with interactions between unlike mol-
ecules in non-ideal mixtures. It is no surprise that some of equa-
tions of state can provide a good prediction for the ternary
mixtures, because the coefficients in those equations and mixing
rules have been frequently modified and verified by the fitting to
the experimental data of pure members and binary mixtures of
H2O, CO2, and H2. To further evaluate the accuracy of the ML
mappings and the EOS models, the maximum absolute relative
deviations (MARD) between the MD simulations and the above
models are calculated as

MARD¼




Pmodel � PMD

PMD





� 100%; (10)

where the subscripts ‘MD’ and ‘model’ represent the results from
the MD simulations and the ML mappings or the EOS models,
respectively. We can be observed from Fig. 5(c) that the DMW EOS
exhibits a minimum MARD among those three EOS models. It is
because unlike the cubic EOS truncated at the third virial coeffi-
cient, the DMW EOS has a rather complex form with more co-
efficients, generally presenting better predictability for
supercritical fluid mixtures. However, the ML mappings can give a
prediction with extremely low MARD of 1.7%, an order of magni-
tude improvement over those three equations of state. At this stage
in the development of equations of state, the proposed data-driven
ML method, which requires no knowledge of the motions and
intrinsic interactions of molecules, may hold greater promise for
generating accurate thermodynamic mappings for multi-
component mixtures.
4. Conclusions

In summary, we introduced a general ML framework for pre-
dicting the thermodynamic properties of pure fluids and their
mixtures. The feasibility, accuracy, and generalization ability of the
proposed ML approach for constructing the thermodynamic map-
pings of fluids and predicting their thermodynamic properties were
evaluated via practical applications using pure H2O, CO2, and H2,
and their ternary mixtures. The ML mappings of the predictive
model were thereby demonstrated to yield extremely satisfactory
mapping and prediction results. In contrast to the prediction of
thermodynamic properties based on the development of equations
of state, which is generally a very challenging process involving
ever increasingly complex analyses of the effects of molecular
configurations and/or interactions on the forms of the EOS and
various mixing rules, our approach is advantageous for directly
learning thermodynamic mappings from existing data with no
prior knowledge of the underlying physical mechanisms. Even so,
the further development of equations of state through unremitting
efforts is invaluable and should not be replaced by ML approaches.
We envision that the generation of thermodynamic data by ML
mappings may be extremely conductive toward investigating
physical correlations among thermodynamic parameters and may
well promote the development of equations of state.
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Appendix

Soave modified Redlich-Kwong equation of state. The SRK-EOS for
pure fluids is given by Ref. [11].

P¼ RT
Vm � B

� A
VmðVm þ BÞ; (11)

with

A ¼ Acb; (12)

Ac ¼ 0:42747
R2T2c
Pc

; (13)

b ¼
h
1þ k

�
1�

ffiffiffiffiffi
Tr

p �i2
; (14)

k¼0:48508þ 1:55171u� 0:15613u2; (15)

B ¼ 0:08664
RTc
Pc

; (16)

where R is the ideal gas constant; the subscript ‘c’ denotes the
properties at the critical point; Tr represents a reduced tempera-
ture; u is the acentric factor of molecules.

Peng-Robinson equation of state. The PR-EOS takes the form for
pure fluids [12].

P¼ RT
Vm � B

� A
VmðVm þ BÞ þ BðVm � BÞ; (17)

with

A ¼ Acb; (18)

Ac ¼ 0:45724
R2T2c
Pc

; (19)

b ¼
h
1þ k

�
1�

ffiffiffiffiffi
Tr

p �i2
; (20)

k¼0:37464þ 1:54226u� 0:26992u2; (21)

B ¼ 0:07780
RTc
Pc

: (22)

van der Waals mixing rule. Mixing rules extend the applications of
equations of state frompure fluids tomixtures. In this work, van der
Waals mixing rule is used as follows:

A ¼
Xn
j¼1

Xn
q¼1

xjxqAjq (23)

Ajq ¼ �1� djq
� ffiffiffiffiffiffiffiffiffiffi

AjAq

q
(24)
B ¼
Xn
j¼1

xjBj (25)

where djq is the binary interaction parameter for the components j
and q. All parameters in the above mixing rule for the H2O-CO2-H2
mixtures can be found in other literature [52e54].

Duan-Møller-Weare equation of state. Compared with cubic
equations of state, the DMW-EOS has a more complicated form
with fourteen coefficients [15].

Z ¼ PzVz

RTz
¼ 1þ a1 þ a2=T

2
z þ a3=T

3
z

Vz
þ a4 þ a5=T

2
z þ a6=T

3
z

V2
z

þa7 þ a8=T
2
z þ a9=T

3
z

V4
z

þ a10 þ a11=T
2
z þ a12=T

3
z

V5
z

þ a13
T3z V

2
z

 
1þ a14

V2
z

!
exp

 
� a14

V2
z

!
;

(26)

with

Pz ¼ 3:0626t3P
m

; (27)

Tz ¼ 154T
m

; (28)

Vz ¼ Vm

� t

3:691

��3
; (29)

where Z is the compression factor; t and m are the Lennard-Jones
parameters; Vm is in L/mol. For mixture applications of the DMW-
EOS, the Lorentz-Berthelot rules is used to mix the parameters m

and t

m ¼
Xn
j¼1

Xn
q¼1

xjxqC1;jq
ffiffiffiffiffiffiffiffiffiffi
mjmq

p
; (30)

t ¼
Xn
j¼1

Xn
q¼1

xjxqC2;jq
�
tj þ tq

�
=2; (31)

where C1;jq and C2;jq are the mixing parameters describing the bi-
nary interaction between components j and q.
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